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The graph scheme developed in 1 is further investigated. The structure of the coefficients aa- is 
determined in terms of a0 and the projections of the splitting graphs. This allows a formal sum­
mation of the /c-series. The first few terms of the strong coupling series for the lowest mass eigen­
value are computed for the X <}r4 theory. The leading term for large /. is complex. This restricts 
physically acceptable solutions to /. below some critical value.

By including a bare mass m in the I.agrangian. the a/.- become dependent on it. Consideration 
of one a/,- e.g. a0(m, X) should then be sufficient for the determination of physical mass eigen­
v a lu e s .

This paper is a further development of the func­

tional solution scheme for a relativistic strong cou­

pling theory proposed in *. As it is done in we 

deal with a real scalar field, self-coupled by a poly­

nomial interaction Lagrangian about the special 

structure of which we need no further assumption. 

In 1 a power series with respect to p~ has been found 

for the FouRiER-transform of the 2-point-function. 

We are able to sum this power series formally by 

means of an adequate representation of the coeffi­

cients in this series. In this way, we find an explicite 

expression for the situation of the pole nearest to 

the origin in the complex p~-plane, valid for big 

values of the coupling constant. The poles at larger 

distances from the origin cannot be determined so 

easyly but we can give an approximate expression 

for the second pole (and in principle also for the 

higher ones). All these expressions are series with 

respect to decreasing powers of the coupling con­

stant.

In particular we apply our results to a real scalar 

field model with the self-interaction-Lagrangian X <p4. 

Then we find for big X a complex value for the 

nearest pole in the p2-plane, the distance from the 

origin being proportional to Xl/i. The higher poles

* Present adress: Joint Institute for Nuclear Research, 
Dubna/UdSSR.

1 G. H e b e r  and H. J. K a is e r , Z. Naturforschg. 19 a, 828 
[1964],

2 T h e  p a r t ic u la r  e x p o n e n t  o f  X i n  th e  te r m s  o f  a/,■ d e p e n d s , 

o f  c o u r s e , o n  th e  s p e c ia l  s t r u c t u r e  o f  th e  in t e r a c t io n  La- 

GRANGian. We c a l l  t h e  p o w e r  o f  X i n  t h e  f ir s t  te r m  o f  a0 r/ 
a n d  s a y  th e r e a f t e r ,  w e  h a v e  se r ie s  w i t h  r e s p e c t  to  in c r e a s ­

i n g  in t e g e r  p o w e r s  o f  rj.

(in complex p2-plane, too) are given by decreasing 

power series starting with some higher order in / v* 

and progressing with /~' 2. — The possible physical 

meaning of these results is discussed.

1. An Useful Connection between the

In 1 we have established that the FouRiER-Trans- 

form T2{p) of the 2-point-function can be written in 

the form

OO

T^ip) = - i 'V M p 2)* . (1 )
Ar = 0

The otA. are by their definition infinite series with 

respect to negative powers of the coupling constant 2. 

A very useful tool to write down the a* is the graphi­

cal representation given in *, e. g. we can write 3.

«0 -  )  +  | o + f = + o | o + | < ] - # -

+ ° H  + O|s+Po (j)+”" (2 )

<*; “ J  +2* j _ .  *2* ° J °  + + P, (J) -

Fig. la . Fig. 1 b. ° j

3 In equ. (2) the numerical coefficients are the “multipli­
cities” of the graphs. They account for the numerical equa­
lity of e. g. the graphs of Fig. 1 a and 1 b and are not to be 
confused with the weight factors (I, Appendix C). The 
symbols P0 and P 1 mean the “projections” of (□ <5(x))3 
on 6(x) and Ö  <5(z) resp. (see also Appendix A).
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Let us assume the ak in eqs. (1 ), (2) already 

„renormalized“, i. e. they must not contain only 

longer the quantity £ (the limit of the volume of a 

primitive cell in lattice-space). As it is pointed out 

in this renormalization is possible in those cases, 

which are renormalizable in the framework of per­

turbation theory4. The numerical value of such 

single graphs appearing in (2 ) can be found in

App. A.

The problem to be solved is to sum the double 

infinite series (1). Some insight can be gained by 

use of the following representation for the at/, :

a i =  ao‘ + 8 i >

a2 =  a03 + 2 ct0 gl + g2 ,

a 3 =  a 0 4 +  3  O.Q- g i  +  2 2 0 go + g x~ +  g 3

(3)

and so on.

Formulae (3) need the following explanation: Multi­

plication of two (or more) graphs means their con­

nection at their free ends, e. g. as in Fig. 2.

Fig. 2.

gi contains the contributions to ol1 which come 

from the splitting graphs and are not contained in 

a0 . In the graphical representation we have Fig. 3.

9i ~ P i ((J) +2 (Jf + (£>+- + (J+ - + Fig. 3.

gl is a power-series with respect to rj, too, starting 

with rf. Multiplication is shown here in Fig. 4.

* Pi - p i

Pi x Pi {])-
Pi 0  

Pi 0

Fig. 4.

The product of two terms contained in gx appears 

first in a3 but not in a2 . Further we have Fig. 5. 

g2 starts with ij~.

92 ~ P2 Fig. 5.

4 Tn superrenormalizable theories as well as in nonrenorma- 
lizable ones an «-dependence must be dealt with.

One can check easily the representation (3) of the 

noting that the numbers n and k (see Appendix A) 

appear only as exponents and that the multiplications 

in (2) are just the multinomial-coefficients. These 

multiplicities are the numbers of possibilities to con­

struct different graphs from different contributions 

to a0 . In (3) there again appear certain multiplicities 

which have a quite similar meaning, namely: they 

are the numbers of the possible different sequences 

of the factors a0 , , g2 in a product a0' g^ g2k . . . .  

Therefore, they are again multinomial-coefficients 

times the permutations of the different factors. We 

get for the general expression 5

V  (k 2  7 • i ’ i j 1 a \
*k = > ___ *-q________V  81182 ■ • 8r • (4)

The sum appearing in the factorial is to be per­

formed in such a way that the condition

2 (7  + 1 ) l} = k+ 1
;=0

(5)

is fulfilled. With this representation for ak we are 

able to sum this series (1 ) over k.

2. Summation

We have to sum

OO

T2(p) = - i y * k(p2)k 
k=0

, y y

k=0 U nij\
7 =  0

a0Z° 8\l 8t* • • • 8rr p2k
(6)

with the restriction (5).

Because of (5) we have

aoh 811822 • • • 8rlr p2k

=  (a0p2) /o (gl p4)/l (82 P6)1'- • • (8rP2[r + 1)) lrP~2-

Now we shall reorder the series (5) so that we 

gather no longer the terms for a fixed k but for a 

fixed value of the number

N =  k-  Y j  lj + 1
; = 0

(7)

Then we have by (5) l0 = N — ^ l j  and the sum in
;=i

5 The numerator of the weight factor is the number of per­
mutations of all factors, the denominator the number of 
permutations of identical factors.
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(6 ) starts as a sum over N with N = 1 which is the value following from (7) for k = 0. In this way we 

transform (6 ) into

.fr, ]\j\

T2(P) = -* P~2Z  ^  ' (30p2) ?° (g ip 4) ?1 . . . (grP2(r+1)) lr = ~ ip~ 2X  (a0P2 + ̂ lP 4 + 82 P6 + •••)* •
V=1 /, IIlj\

i=o
N =  1 (8 )

The second line of (8 ) follows with the help of the polynomial formula. Now, we substitute N by N' + 1 

and call N' again N. The new summation index runs from 0 to oo. We get:

r 2(P) = - i>-2Z ( 3op2 + «1p4 + ---)'v+1 =
3o+ 2  SiP2i 

i= l

N=0

after summing up the resulting geometrical series. 

Expression (9) is a somewhat more closed expres­

sion for T2(p) than the power series (1). However, 

it contains still the infinite series 2  gj p2‘ . Further, 

we must remember that a0 and the g are infinite 

series with respect to decreasing powers of some root 

of the coupling constant /. But nevertheless, we have 

got an expression which is more adequate for the 

determination of the poles of T2(p) in which we are 

interested. — The residues of the poles can, of 

course, be calculated too. That one of the lowest pole 

is — i (in the first four orders).

3. The Lowest Poles

The poles of T2(p) should correspond to mass- 

eigenvalues of the field under consideration. To find 

the poles of T2(p) we have to determine the zeros of 

the denominator:

! - p 2 ao-P2Z & P 2i = 0 -
1=1

(10)

For the determination of the zeros we need the exact 

analytical behaviour of the denominator, but we have 

only a power series for it which is an inadequate tool 

for the detection of zeros. We shall do some neglec- 

tions in (1 0 ) to get informations about the poles of
OO

T2(p) , for we are not able to sum the series gi p2>
i=  1

exactly.
OO

If we neglect the whole series g-t p2' in (10), we
i=l

get a pole for p2 = K02 = l/a0 cc and no other 

poles.

1 - P 2(a0+ 2  g jP2j) 
i^i

(9)

Now we insert the found approximate value for 

K02 into equ. (10) and find this equation to be 

fulfilled in the lowest two orders of i].

Going further and including the term gi p4 one 

gets a quadratic equation, one root of which is again 

a0_1, corrected by higher order terms [starting in 

order i], see equ. (12 a)]. The other root is oc rj~3. 

If one inserts this second root into equ. (10) one 

finds that all terms of the infinite series are of the 

same order of magnitude with respect to }]. There­

fore it is no good approximation for the second pole 

to include only gA p4, for the corrections resulting 

from the other terms are of the same order r]~3.

Another way to treat equ. (10) consists in sum­

ming the lowest contributions (with respect to i]) to 

the gji Doing this (see Appendix B) we get the 

quadratic equation

p 'C l  - a 0i)  + p, (j + 1 6 j0)- 1 6  = 0 (11)

with s = — i (/.,3 + | / 2 U + <j/6) •

f„ is identical with f0(n) in 1. The roots of (11) are

(in the lowest two orders of rj)6:

K * = ~ w X s -  ( ,2 ) ’ (13'

It is not hard to give the first correction to the ex­

pression (12 ) for the first pole by going back to 

equ. (10) as indicated above. Then one gets in the 

next order:

K 2 =
81

(1 2 a)

Corrections to (13) cannot be obtained so simply.
OO

One has to sum up for this the series ^  gj p2‘ in a
i= 1

Remark that the expressions (12) and (12 a) for K02 could 
also (in the valid order of rj) be obtained from the de­
termination of the radius of convergence of the T a y lo r-

series (1). This method was proposed in 1. It seems, how­
ever, not to be very simple to go in this way to the other 
poles (see also Appendix C).
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better approximation. This can be done for the next 

two orders (with respect to ?]) with a similar techni­

que as indicated in Appendix B. By summing up all 

graphs of the form Fig. 6 , and the equivalent ones 

for gt (similar for the other gj) one gets corrections

Pi ( (JP + t f N —'*(£> + (£l+— ) Pi ($)

Fig. 6. Fig. 6 a.

to and K02 but no third pole. An equation of 

higher order in p2 than 2 instead of (1 1 ) appears 

however first by taking into account graphs of the 

form Fig. 6 a in gx (and the corresponding in the 

other g j). So the third pole does originate essentially 

from these five-fold splitting graphs, but of course 

these graphs produce also further corrections to 

(12a) and (13). We do not wish to go into details 

here but we mention that according to (13) the 

power series for K^2 begins with r]~3. That for K22 
seems to begin with r]~5.

4. Application to Model

We have applied our scheme to the special
L = ? (p ö  <p — X <px. In this case we get

_  0.338 _  0.0927 _  0,144

>2~ y n  5 ' 4 - _  ix ’ ' 6 _  yTx3 •

The explicit form of a0 is according to (2) :

ao =  * f-2 + -I fi — 4 fi fi — 8 fa + • • • • (15)

Using (14) and (15) we calculate K02 from (12). 

In the lowest order, we find

jv- 2 _ ^ _i y i yx
°" i f ,  ~  0,338 ’

i. e. a complex value for the square of the lowest 

mass. This result, however, cannot be interpreted as 

an instable state (say resonance), for there are no 

particles with lower mass into which this state could 

decay. Therefore, we require the lowest pole to lie 

on the real positive p2-axis. This is also to be postu­

lated, as otherwise the two-point-function in x-space 

would for large x2 have the wrong physical be­

haviour. It is evident that will be real only for 

certain values of X. Calculating the value of /. for 

which K02 lies on the real axis (for (p4 model) we 

find A « 0 ,0 1 , if we use the first three terms in the 

expansion of K02 according to (12 a). Of course, 

our method (series in decreasing powers of / '/s) is 

not a good one for such small X. Not only the ex­

case of

(14)

pression (12 a) becomes invalid for such small X, it 

is also unknown whether K02 is in this region still 

the lowest pole. So we can say only that for big X the 

lowest pole does not lie on the real axis. If the spec­

trum contains the eigenvalue K^2 = 0 for some /.c 

then all become infinite there such that their 

power series in / _,/s diverges for

A ^  l c .

This statement can be reversed: Unless, in the X(p* 

theory, the strong coupling series converges through­

out the halfplane 9̂ C/ _1/ä> 0  there must exist for 

some Xc a zero eigenvalue.

Adding a bare mass m to the / (p4 theory we can 

by similar reasoning determine the position of the 

eigenvalues K f  by the following procedure: Fix a 

point m and determine the largest I  for which the 

expansion of a0(X,m) as power series in / -1/s di­

verges. Then for this / one of the physical masses is 

Kj = m (cf. Appendix C).

Higher poles may for special /-values happen to 

lie on the real axis, but we have not investigated this 

topic further, as the lowest pole is the one most im­

portant for the asymptotic behaviour of the pro­

pagator for big x2. — We remark that this un­

physical behaviour of the propagator is a feature of 

the special model discussed in this section; it 

possibly is present, however, also in similar models 

[e. g. such with Ly? = — A<pM(:r)].

5. Discussion

What is the physical meaning of the special result 

derived in the last section? First we wish to stress 

the fact that judging from the first terms of the series 

K02 becomes real only for small values of /; this 

demonstrates that for big I  the original value of 

is only very slowly shifted by the 

correction terms. That might mean that our formula 

(12 a) is indeed a good approximation for big X. At 

least the next few correction terms are small for

big X.

Secondly we must remark that our calculation 

does not represent a rigorous proof of the unphysical 

behaviour of the propagator for big X, as we are

unable to sum up the series ^  g; p2' exactly. We
i

believe, however, that our result is correct for big / 

and that this special feature of the model has someth­

ing to do with lack of unitary for big X. We mention
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that Schiff 7 and Marx 8 have shown for the / <£4 
model that the scattering amplitude is finite only 

after renormalizing the coupling constant such that 

the unrenormalized coupling constant A must be zero. 

If this should be correct in that case also for big A, 

the model has no physically acceptable solutions.

So it may even be that our method in this special 

case makes no sense, because of our assumption of 

big I. But in models or systems which allow a big 

unrenormalized coupling-constant9, our method 

should be a useful one. Finally we wish to remark 

that quite recently Caianiello 11 put forward the 

supposition that the model, considered also by us, 

has Green’s Functions being non-analytic at I  = 0 . 

He supposes that there are branchpoints at I  = 0 and 

X = oo. He supposes further that these functions are 

analytic functions, however, of If this would be 

true, our expansion in the case M = 4 would be just 

the right one, as our expansion-parameter i] is in that 

case in fact A~I/2. But Caianiello does not yet have 

a complete proof n .
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Numerical Value of a Graph

Appendix A

The numerical value of a graph is a product of 

five factors:
(— j) n/2—1

1. The factor ^ / 2_ i ) ; 2«/2-i from the expansion

(8 ) in 1, 2 ~ ”/2+1 arises from the fact that we use 
L = — ̂  <p\Z\<p-X (pM instead of L = cp Ö  99 — A 9oM 

in 1, but the same G(i, j ).

9 TV, ' U* f  * 2» /2- l(n /2- l)!2. The weight factor - 2s n  n

(see *), Appendix C, with substitution gi~^ .

7 L. I. Schiff, Proc. High-Energy-Physics Conf. at CERN, 
Geneva 1962, p. 690.

8 G. M arx and G. Kuti, private communication.
9 From unitary according to theorems of R udermann et al. 10

limits can be derived for the renormalized coupling con­
stant. But according to Lehmann-Källen spectral repre­
sentation. the renormalized coupling constant should be

3. The corresponding product of /’s, given in 

Appendix A, which we call simply /.

4. The product of CD (5(0), Ö 2 (3(0), (□ (5(0))2, . . .  

and the projections of the splitting graphs, corre­

sponding to the given shape of the graph, which we 

call z.

5. A factor ( — 1) k from e~'pT = ( — p2)k e~lpx.

From all the product we exclude a factor i which 

is a common multiplier of all graphs, and write it in 

front of the whole expression for T2(p), and we get

( _ £ ) n/2 ( — 1 ) w/2+1 ( _ i)Ar

2* I I  pi! 77 ji! ’ Z

for the numerical value of a graph.

Remark, that £ has been removed in the case 

M = 4, N = 4 already by renormalization.

Regarding the factor z we give some examples. If 

one has only one simple loop, CU (5(0) appears.

This can be evaluated with the help of formula 

( f6 a) of 1 it yields 0(5(0) = £“ s/\ Now £ is already 

extracted by renormalization, so we are left with 

z = 1 in that case.

Another case is O 2 (5(0). Application of the same 

formula gives z = 3/2 for this case.

Further we give an example for the projection of a 

splitting-graph. There appears for example (Q  <5(a;))3. 

which should be written as a linear combination:

(□  (5 (x) )3 = ax □ d (z) + a0 d (x) .

Higher derivatives cannot appear, as CU (5 (x) is not 

zero only at those points of lattice-space, where 

x = 2 4j/f or x=^0. [Formula (16) of 1 gives 

CU <5 (x) =1/4 for x = 2 4]/£.] Now we must postulate 
that

(□ (5(x) ) 3 = a1 □ <5(x) for x = 2 4]/£.

It follows a1 = 1/42. The determination of a0 in

(□  ö (x) )3 = aj □  (5 (x) + a0 d (x)

must be done similarly by comparision of the two 

sides of the equation for x = 0 , ax being as above.

smaller than the non-renormalized one (at least in theories 
of the type of quantum electrodynamics).

10 M. A. R u d e r m a n n , Phys. Rev. 127, 312 [1962], — S.D. 
D r e l l , A. C. F in n , and A. C. H e a r n , Rep. Intern. Conf. 
High-Energy-Physics, Dubna 1964.

11 R. E. C a ia  n ie l l o , private communication.
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Appendix B: Summation of the lowest contributions the weight of the graph. The lowest order contribu-

to gi

The lowest contribution to gx comes from the 

graph Fig. 7 and is ^  f 2. The factor 1/16 

results from the projection (see Appendix A ) ; 1/3 is

tions to g2 are shown in Fig. 8 , which represent

Fig. 7.
Fig. 8 .

i /.
162 3! V.3! /e + fa,2 + i f  a fa )—• - - • r162 * 3!162 ( 3 ! 2 fi~ /ö + 3 j f i 2 /a3 + 21 f * f ' 2

r = — i / 6 + / 23 + 1 /4 /o ) .

For gs we have in the considered approximation the graphs of Fig. 9, which represent

___ i 2 J  ̂ / 2 ,  ̂ I 6, / I I 1 j j 2 1 2 ! 9 8̂ fz3 I 9 A / iA  1 9 ^  ̂ 2-\ =  —- /i—
163 ' 4 13!2 ' 6 3! ' 2 \2!3 2 !2 / ' 4 ' 2 3 !2 3 !2 2 2 !2 j 163 3!

/42/6 +p2 

16— rp2

+2*

Fig. 9.

Further by induction, one finds

1 . 1L <-1
16» 3! r ’

OO

and the series ^  g; p2i becomes
i=1

 ̂ * 00 1 0 / 0 00 -1

V _  y  1  r i - i  „ ä i  _  ^ V  y  1 . r i p i . _

6 16* P 16-6 £ 5  16' '

We use this expression in (9) and get:

j  t \ _  ______ 16an —a0 r p 2+ (/42/6) p2
2 P 16 —rp 2—16 a0 p2 + a0 r p 4 — (/42/6) p4

Equ. (11) is the equation for the determination of 

the poles of T2(p) in the used approximation.

Appendix C : Expansion around another point in 

complex p--plane

We wish to get the propagator for all values of p2, 

but our method gives us only series which are ex­

pansions around the point p2 = 0 . It would be much 

better to have an expansion of T2 about any other 

point of the p2-plane, say about the point mr:

T-2{p) = H ak(m) ( - P 2 + m2) k . ( C l )

This could be done by writing instead of

L \ <p □  <p — X <p*

L = hty (C  + m2) (p — — \mr <p2,

considering the last two terms of L as the interaction 

terms. Our formalism would work in that case as

well. The numerical values of the quantities Mk 

(determining the />•) however would not be given 

by (1 1 ) of 1 but by

OO

Mk = f y2k exp { - i s (A y4 + hmr y2) } dy , (C 2 )

Mk M0 =  (2 / £ A)-C2Ä+D/2 r
2k + l\

•exp
32 i I

D(2 k+ 1)12
Y i e

2 1/2 X
where Dn (z) is the function of the parabolic cylinder 

for the index n. The mass renormalization possible 

in the case M =  4, N = 4 affects here m in the same 

manner as p2.

Further there are some alterations in the calcula­

tions resulting from expressions like (O  + m2) (5(0 ) 

instead of L] <5(0) and so on. Summing up the new 

series would be possible now as well, yielding:

7 ,(P ) =  7-------00---- “ ------p i ---- •
( a0(m) + 2  g i(m ) (p2 — m 2) i j - p 2 +  m 2

Apparently, we have

lim T2(p) = i  a0(m) .
pt -*■ mr

So it depends only on a0(m) wheather the point 

p2 = m2 is a singular point of the propagator or not. 

This is very promising as we do not need in such an 

approach the g-t . As there are no poles in the in­

dividual terms of the power series of a0(m) (with 

respect to powers of tj), we must look for those 

singularities of a0(m) which result from the diver­

gence of this series.


