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The graph scheme developed in ! is further investigated. The structure of the coefficients ay is
determined in terms of a, and the projections of the splitting graphs. This allows a formal sum-
mation of the k-series. The first few terms of the strong coupling series for the lowest mass eigen-
value are computed for the 4 ¢* theory. The leading term for large 4 is complex. This restricts
physically acceptable solutions to 4 below some critical value.

By including a bare mass m in the Lagrangian, the a; become dependent on it. Consideration
of one aj e.g. ag(m, Z) should then be sufficient for the determination of physical mass eigen-

values.

This paper is a further development of the func-
tional solution scheme for a relativistic strong cou-
pling theory proposed in !. As it is done in !, we
deal with a real scalar field, self-coupled by a poly-
nomial interaction Lagrangian about the special
structure of which we need no further assumption.
In ! a power series with respect to p* has been found
for the Fourier-transform of the 2-point-function.
We are able to sum this power series formally by
means of an adequate representation of the coeffi-
cients in this series. In this way, we find an explicite
expression for the situation of the pole nearest to
the origin in the complex p?-plane, valid for big
values of the coupling constant. The poles at larger
distances from the origin cannot be determined so
easyly but we can give an approximate expression
for the second pole (and in principle also for the
higher ones). All these expressions are series with
respect to decreasing powers of the coupling con-
stant.

In particular we apply our results to a real scalar
field model with the self-interaction-Lagrangian 4 ¢*.
Then we find for big 4 a complex value for the
nearest pole in the p*plane, the distance from the
origin being proportional to 17*. The higher poles

* Present adress: Joint Institute for Nuclear Research,

Dubna/UdSSR.

! G. Heser and H. J. Kaiser, Z. Naturforschg. 19 a, 828
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The particular exponent of 4 in the terms of a; depends.
of course, on the special structure of the interaction La-
crancian. We call the power of 1 in the first term of a, %
and say thereafter, we have series with respect to increas-
ing integer powers of 7.

o

(in complex p?-plane, too) are given by decreasing
power series starting with some higher order in 72"
and progressing with 2="2. — The possible physical
meaning of these results is discussed.

1. An Useful Connection between the o,

In ' we have established that the Fourier-Trans-
form T, (p) of the 2-point-function can be written in
the form

o
Ts(p) = —iZl/,(pg)l". (1)
k=0
The a, are by their definition infinite series with
respect to negative powers of the coupling constant 2,
A very useful tool to write down the a;, is the graphi-
1

cal representation given in 1, e. g. we can write 3.

=] # e e a1 4

++=o & o+-_—-+oB + P, (I)+
a,=I+21 LD+21 I:,«g. OIO + I‘OJ + P (Ip
oI Fig. 1 b. C‘l

In equ. (2) the numerical coefficients are the “multipli-
cities” of the graphs. They account for the numerical equa-
lity of e. g. the graphs of Fig. 1 a and 1 b and are not to be
confused with the weight factors (I, Appendix C). The
symbols P, and P; mean the “projections” of ((] d(x))*
on d(x) and []d(x) resp. (see also Appendix A).

(2)

Fig. 1a.
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Let us assume the a; in eqs. (1), (2) already
,renormalized, i.e. they must not contain only
longer the quantity ¢ (the limit of the volume of a
primitive cell in lattice-space). As it is pointed out
in 1, this renormalization is possible in those cases,
which are renormalizable in the framework of per-
turbation theory *. The numerical value of such
single graphs appearing in (2) can be found in
App. A.

The problem to be solved is to sum the double
infinite series (1). Some insight can be gained by
use of the following representation for the a;:

%o

a3 =29>+ gy,

ay=ag* +2 )8+ 82> Al

ag=ay* +3 a5° g1 +2 29 82+ 81" + 83
and so on.
Formulae (3) need the following explanation: Multi-
plication of two (or more) graphs means their con-
nection at their free ends, e. g. as in Fig. 2.

+'+-I i
(- +o)2'1 *2L>+E Fig. 2.

g, contains the contributions to a; which come
from the splitting graphs and are not contained in
a,. In the graphical representation we have Fig. 3.

9 =P ((D 2 ([ + ®+...+@+...+8+...) Fig. 3.

g 1s a power-series with respect to 7, too, starting
with #*. Multiplication is shown here in Fig. 4.

*’P;(D'Pl(% J
HQ,B@-Z
1

The product of two terms contained in g, appears
first in a3 but not in a,. Further we have Fig. 5.
&> starts with 27,

Q=B(Qy$+@+gh“)

4 Tn superrenormalizable theories as well as in nonrenorma-
lizable ones an e-dependence must be dealt with.

Fig. 5.
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One can check easily the representation (3) of the
ay noting that the numbers n and k (see Appendix A)
appear only as exponents and that the multiplications
in (2) are just the multinomial-coefficients. These
multiplicities are the numbers of possibilities to con-
struct different graphs from different contributions
to ;. In (3) there again appear certain multiplicities
which have a quite similar meaning, namely: they
are the numbers of the possible different sequences
of the factors a,, g;, g in a product o' g/ g,* . . . .
Therefore, they are again multinomial-coefficients
times the permutations of the different factors. We

get for the general expression ®

L =S jlL+1) !
2 = } ( jgo] i+1)
L

% g ga" . g (4)

The sum appearing in the factorial is to be per-
formed in such a way that the condition

<

G+ li=k+1 (5)
j=0

is fulfilled. With this representation for a; we are
able to sum this series (1) over k.

2. Summation

We have to sum

Ty(p) = —iY ar(p?)*
=0
(k= 3 j1j+1) !

Nl

W o T 2k
, agh g gL g p*
7 1 ;! (6)

i=0

—
A

with the restriction (5).
Because of (5) we have

%" gy g g PPt |
= (2 p*)" (g1 p")" (g820%) " .. (& p*" V) p 2.
Now we shall reorder the series (5) so that we

gather no longer the terms for a fixed % but for a
fixed value of the number

,
Ne=h~ 2 jl41, (7)
i=0
’
- \ .
Then we have by (5) [,=N— 2 [; and the sum in
ji=1
5 The numerator of the weight factor is the number of per-

mutations of all factors, the denominator the number of
permutations of identical factors.
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(6) starts as a sum over N with N =1 which is the value following from (7) for & = 0. In this way we

transform (6) into

S« N
To(p) = —ip~2) D
2(p p &7
j=C

(2o p?) b (g pH)lr... (g p*r ")l = —l'p_QNZl(:zop2+g1p4+g2p6+...)"'.

(8)

The second line of (8) follows with the help of the polynomial formula. Now, we substitute N by N +1
and call V" again N. The new summation index runs from 0 to ~. We get:

3]

Ty(p) = — ’.P_")\‘;(la p*+g pt+

after summing up the resulting geometrical series.
Expression (9) is a somewhat more closed expres-
sion for T, (p) than the power series (1). However,
it contains still the infinite series 3 g; p*'. Further,
we must remember that o, and the g; are infinite
series with respect to decreasing powers of some root
of the coupling constant /. But nevertheless, we have
got an expression which is more adequate for the
determination of the poles of T, (p) in which we are
interested. — The residues of the poles can, of
course, be calculated too. That one of the lowest pole
is —1 (in the first four orders).

3. The Lowest Poles

The poles of T,(p) should correspond to mass-
eigenvalues of the field under consideration. To find
the poles of T,(p) we have to determine the zeros of
the denominator:

1-p? ao—pgzig; pi=0. (10)

=
For the determination of the zeros we need the exact
analytical behaviour of the denominator, but we have
only a power series for it which is an inadequate tool
for the detection of zeros. We shall do some neglec-
tions in (10) to get informations about the poles of

o0

T, (p), for we are not able to sum the series Zl gi p¥

=
exactly.

If we neglect the whole series Z gip*in (10), we
i=1
get a pole for p>=K>=1/a; > 57! and no other

poles.

% Remark that the expressions (12) and (12 a) for K,? could
also (in the valid order of %) be obtained from the de-
termination of the radius of convergence of the TavLor-

_”)N+1 = 1 -

:lo‘*"glgi p?i (9)

s ..
1—p%(ay+ T i p%i)
7~

Now we insert the found approximate value for
Ky* into equ. (10) and find this equation to be
fulfilled in the lowest two orders of 7.

Going further and including the term g; p* one
gets a quadratic equation, one root of which is again
2y~ 1, corrected by higher order terms [starting in
order 7, see equ. (12 a)]. The other root is ~ 773,
If one inserts this second root into equ. (10) one
finds that all terms of the infinite series are of the
same order of magnitude with respect to 7. There-
fore it is no good approximation for the second pole
to include only g, p, for the corrections resulting
from the other terms are of the same order 173.

Another way to treat equ. (10) consists in sum-
ming the lowest contributions (with respect to #) to
the g;: Doing this (see Appendix B) we get the
quadratic equation

p4(fg2 _a05)+p2(5+16 29) —16=0 (11)

with s=—i(f>+3f2 fa+¥fe) -
f. is identical with f,) in 1. The roots of (11) are
(in the lowest two orders of #)9:

. 1 16 a,

KO-Z a,’ K12:  f¥f6—ags

It is not hard to give the first correction to the ex-
pression (12) for the first pole by going back to
equ. (10) as indicated above. Then one gets in the

next order:

(12), (13)

K= (1- &), (12 )

a2
Corrections to (13) cannot be obtained so simply.
, Ty
One has to sum up for this the series Z gip*in a
i=1
series (1). This method was proposed in 1. It seems, how-

ever, not to be very simple to go in this way to the other
poles (see also Appendix C).
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better approximation. This can be done for the next
two orders (with respect to #) with a similar techni-
que as indicated in Appendix B. By summing up all
graphs of the form Fig. 6, and the equivalent ones
for g, (similar for the other g;) one gets corrections

A (ﬁ’+‘ﬂ?+---+(1>. +(I}+.-- ) P,@)

Fig. 6. Fig. 6 a.

to K,? and K,? but no third pole. An equation of
higher order in p? than 2 instead of (11) appears
however first by taking into account graphs of the
form Fig. 6a in g, (and the corresponding in the
other g;). So the third pole does originate essentially
from these five-fold splitting graphs, but of course
these graphs produce also further corrections to
(12a) and (13). We do not wish to go into details
here but we mention that according to (13) the
power series for K,? begins with 573, That for K,>
seems to begin with 575,

4. Application to 4 ¢* Model

We have applied our scheme to the special case of
L=13% @ O¢@—2q¢* In this case we get

0.338 0,0927 0,144

fgz V” s f4: - T ](6= Vﬁa . (14)
The explicit form of a, is according to (2) :

. 3i [ &

dg=1fa+3fy— 4l fafa— ;fh+ (15)

Using (14) and (15) we calculate K;? from (12).
In the lowest order, we find
s 1 iViVyh
Ky* = ifs *OV,331{;" ’

i. e. a complex value for the square of the lowest
mass. This result, however, cannot be interpreted as
an instable state (say resonance), for there are no
particles with lower mass into which this state could
decay. Therefore, we require the lowest pole to lie
on the real positive p*-axis. This is also to be postu-
lated, as otherwise the two-point-function in -space
would for large 2? have the wrong physical be-
haviour. It is evident that K,* will be real only for
certain values of /. Calculating the value of Z for
which K? lies on the real axis (for ¢* model) we
find £=0,01, if we use the first three terms in the
expansion of K,? according to (12a). Of course,
our method (series in decreasing powers of 2”%) is
not a good one for such small Z. Not only the ex-
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pression (12 a) becomes invalid for such small Z, it
is also unknown whether K,? is in this region still
the lowest pole. So we can say only that for big / the
lowest pole does not lie on the real axis. If the spec-
trum contains the eigenvalue K,>=0 for some 7%,
then all @, become infinite there such that their
power series in 27" diverges for

52l

This statement can be reversed: Unless, in the 4 ¢*
theory, the strong coupling series converges through-
out the halfplane Je 27720 there must exist for
some /. a zero eigenvalue.

Adding a bare mass m to the 4 ¢* theory we can
by similar reasoning determine the position of the
eigenvalues K;? by the following procedure: Fix a
point m and determine the largest 4 for which the
expansion of a,(4, m) as power series in i~ di-
verges. Then for this 4 one of the physical masses is
K;=m (cf. Appendix C).

Higher poles may for special /-values happen to
lie on the real axis, but we have not investigated this
topic further, as the lowest pole is the one most im-
portant for the asymptotic behaviour of the pro-
pagator for big 2. — We remark that this un-
physical behaviour of the propagator is a feature of
the special model discussed in this section; it
possibly is present, however, also in similar models

[e. g. such with Ly = —2¢M(x)].

5. Discussion

What is the physical meaning of the special result
derived in the last section? First we wish to stress
the fact that judging from the first terms of the series
K,? becomes real only for small values of Z; this
demonstrates that for big /4 the original value of
Ky>=1/(if,) is only very slowly shifted by the
correction terms. That might mean that our formula
(12 a) is indeed a good approximation for big 4. At
least the next few correction terms are small for
big 4.

Secondly we must remark that our calculation
does not represent a rigorous proof of the unphysical
behaviour of the propagator for big 4, as we are
unable to sum up the series Z gip® exactly. We

¢

believe, however, that our result is correct for big %
and that this special feature of the model has someth-
ing to do with lack of unitary for big 4. We mention
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that Scuirr © and Marx ® have shown for the Z¢*
model that the scattering amplitude is finite only
after renormalizing the coupling constant such that
the unrenormalized coupling constant 4 must be zero.
If this should be correct in that case also for big 4,
the model has no physically acceptable solutions.

So it may even be that our method in this special
case makes no sense, because of our assumption of
big /. But in models or systems which allow a big
unrenormalized coupling-constant ®, our method
should be a useful one. Finally we wish to remark
that quite recently CaranieLro ! put forward the
supposition that the model, considered also by us,
has Greex’s Functions being non-analytic at 4=0.
He supposes that there are branchpoints at 2 =0 and
/.= ~. He supposes further that these functions are
analytic functions, however, of 2~"2. If this would be
true, our expansion in the case M =4 would be just
the right one, as our expansion-parameter 7 is in that
~"2, But Ca1anieLLo does not yet have
a complete proof 1.

case in fact 4
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Numerical Value of a Graph
Appendix A

The numerical value of a graph is a product of
five factors:
(—i)n/2—1

1. The factor (nj2—1) 1 gn2—1
(8) in 1, 2721 arises from the fact that we use
L=—%¢odep—2¢M instead of L= [Jp—21¢M"
in 1, but the same G (i, j).
27/2=1(p[2—1) !
2s I o;! 11 j;! -
(see 1), Appendix C, with substitution g;— j;).

from the expansion

2. The weight factor

* L. I. Scurrr, Proc. High-Energy-Physics Conf. at CERN,
Geneva 1962, p. 690.

G. Marx and G. Kvur, private communication.

From unitary according to theorems of Rupermanw et al. 10
limits can be derived for the renormalized coupling con-
stant. But according to Leamaxx—KAiLLEx spectral repre-
sentation. the renormalized coupling constant should be
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3. The corresponding product of f’s, given in !
Appendix A, which we call simply /.

4. The product of [] 6(0), (12 6(0), (LI 6(0))3, ...
and the projections of the splitting graphs, corre-
sponding to the given shape of the graph, which we
call z.

1)

5. A factor (—1)* from (0% e~ 7 — (—p2)k e~ i,
From all the product we exclude a factor i which
is a common multiplier of all graphs, and write it in
front of the whole expression for T, (p), and we get
(—i)n/2 (=1)n2+1 (—=1)k .
2s I1 p;! I1 j;! f”

for the numerical value of a graph.

Remark, that ¢ has been removed in the case
M =4, N =4 already by renormalization.

Regarding the factor z we give some examples. If
one has only one simple loop, [ 6(0) appears.

This can be evaluated with the help of formula
(16 a) of ! it yields [J0(0) =& "= Now ¢ is already
extracted by renormalization, so we are left with
z=1 in that case.

Another case is []2 0 (0). Application of the same
formula gives z = 3/2 for this case.

Further we give an example for the projection of a
splitting-graph. There appears for example ((J d(x))>.
which should be written as a linear combination:

(o)) =a; T 6(x) +ayd(x) .

Higher derivatives cannot appear, as [] d(z) is not
zero only at those points of lattice-space, where
r=24%/¢ or x=0. [Formula (16) of ! gives
6 (x) =1/4 for x =2 *)/e.] Now we must postulate
that

(Oo0(x))P=aq; d0(x) for x=2"Ve.

It follows a; = 1/42. The determination of q in

(O6(x))=a; d(x) +ay0(x)

must be done similarly by comparision of the two
sides of the equation for z =0, a; being as above.

smaller than the non-renormalized one (at least in theories
of the type of quantum electrodynamics).

10 M. A. Rupermany, Phys. Rev. 127, 312 [1962]. — S.D.
Drer, A.C.Finy, and A. C. Hearn, Rep. Intern. Conf.
High-Energy-Physics, Dubna 1964.

R. E. Ca1anieLro, private communication.
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Appendix B: Summation of the lowest contributions
to g;

The lowest contribution to gy comes from the

The factor 1/16

;1/3 is

graph Fig. 7 and is 16 3‘ 12

results from the projection (see Appendix A)

1

1 1 g 1 .
- 162(3’ﬁf42f6+ 31 f& 12+ 21 f43f2) = =

with r—
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the weight of the graph. The lowest order contribu-
tions to g, are shown in Fig. 8, which represent

e 80

Fig. 7.

i fe

2
162 3! (3' for b+ ke |= gy 7

*i(?% f6+f23+%f4f‘.’) .

For g5 we have in the considered approximation the graphs of Fig. 9, which represent

1 1 3 1 1 S
T 163 f42{3!2 f62+ f26+ (213 + 2!2)f42f22
+ + + +2x +2x +2x
Fig. 9.
Further by induction, one finds
1 f3
8= 16 317 >
oo
and the series Z gi p>' becomes
i=1
3 ot oo
1 Z 1 rilp2i= Pl 1 ol 9 fe/6+p*
6 ~ 16 16-6 = 16 16—rp?

se this expression in (9) and get:
_ 16 A —% 7 p” +(f4 /6) P'
T2(p) = —rp*—16 a, p*+a, 7 p*— (/¥/6) p*
Equ. (11) is the equation for the determination of
the poles of T, (p) in the used approximation.

Appendix C: Expansion around another point in
complex p?-plane

We wish to get the propagator for all values of p?,
but our method gives us only series which are ex-
pansions around the point p?>=0. It would be much
better to have an expansion of T, about any other
point of the p2-plane, say about the point m?:

T,(p) = (C1)

ap(m) (—p2+m2)k.
T

This could be done by writing instead of
L=}odp—Aig¢
=3p (U +m?) ¢ —Agt— im?¢?,

considering the last two terms of L as the interaction
terms. Our formalism would work in that case as

fo 15 fofsfe | o faf*\ _ 1 f&
T2 +2 g +2 4212'}“163 TR
well. The numerical values of the quantities M,

(determining the f.) however would not be given

by (11) of ! but by

Mkz.‘.yi’kexp{~i£(ly4+ %mgyz)}dy, (C2)
0

My-My= (2ie1)—@k+D2 F(2 gy
. em? Viem?
exP( 32 )Dm”)”(_ 2 Vz’}.')

where D, (z) is the function of the parabolic cylinder
for the index n. The mass renormalization possible
in the case M =4, N =4 affects here m in the same
manner as p>.

Further there are some alterations in the calcula-
tions resulting from expressions like ([ + m?) 6 (0)
instead of [] 6(0) and so on. Summing up the new
series would be possible now as well, yielding:

i

Ty(p) = = e
(ao(m) + Egz(m) (p* ——m-)l) p*+m?

Apparently, we have
lim Ty (p) =iay(m) .

pEo>m?
So it depends only on a4(m) wheather the point
p?=m? is a singular point of the propagator or not.
This is very promising as we do not need in such an
approach the g;. As there are no poles in the in-
dividual terms of the power series of ay(m) (with
respect to powers of 1), we must look for those
singularities of a,(m) which result from the diver-
gence of this series.



